Hello, can you please help me solve question six !

QUESTION A
The equation is given to be:
[tex]\cos x-\sec x=1[/tex]Step 1: Apply the identity:
[tex]\sec x=\frac{1}{\cos x}[/tex]Therefore, we have:
[tex]\cos x-\frac{1}{\cos x}=1[/tex]Step 2: Multiply all through by cos x:
[tex](\cos x)^2-1=\cos x[/tex]Step 3: Rewrite the equation
[tex](\cos x)^2-\cos x-1=0[/tex]Step 4: Make the substitution for cos x = m
[tex]\begin{gathered} \therefore \\ m^2-m-1=0 \end{gathered}[/tex]Step 5: Solve the quadratic equation using the quadratic formula
[tex]\begin{gathered} m=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ a=1,b=-1,c=-1 \\ m=\frac{-(-1)\pm\sqrt[]{(-1)^2-4\times1\times(-1)}}{2\times1} \\ m=\frac{1\pm\sqrt[]{1+4}}{2} \\ m=\frac{1\pm\sqrt[]{5}}{2} \\ \therefore \\ m=\frac{1+\sqrt[]{5}}{2},\frac{1-\sqrt[]{5}}{2} \end{gathered}[/tex]Step 6: Substitute for m back into the solution of the quadratic equation
[tex]\begin{gathered} \cos x=\frac{1+\sqrt[]{5}}{2} \\ or \\ \cos x=\frac{1-\sqrt[]{5}}{2} \end{gathered}[/tex]Step 7: Solve for x by finding the cosine inverse of the solutions
[tex]x=\cos ^{-1}(\frac{1+\sqrt[]{5}}{2})=\text{ undefined}[/tex]or
[tex]x=\cos ^{-1}(\frac{1-\sqrt[]{5}}{2})=128.17[/tex]The value of x is 128.17.
QUESTION B
The equation is:
[tex]\cos x+\sec x=1[/tex]Step 1: Rewrite the equation
[tex]\cos x+\frac{1}{\cos x}=1[/tex]Step 2: Multiply all through by cos x
[tex](\cos x)^2+1=\cos x[/tex]Step 3: Rearrange the equation terms
[tex](\cos x)^2-\cos x+1=0[/tex]Step 4: Make the substitution for cos x = m
[tex]m^2-m+1=0[/tex]Step 5: Solve the quadratic equation
[tex]m=\frac{1+i\sqrt[]{3}}{2},\frac{1-i\sqrt[]{3}}{2}[/tex]Step 6: Substitute for m back into the solution of the quadratic equation
[tex]\begin{gathered} \cos x=\frac{1+i\sqrt[]{3}}{2} \\ or \\ \cos x=\frac{1-i\sqrt[]{3}}{2} \end{gathered}[/tex]Step 7: Solve for x by finding the cosine inverse of the solutions
[tex]\begin{gathered} x=\cos ^{-1}(\frac{1+i\sqrt[]{3}}{2})=\text{ undefined} \\ or \\ c=\cos ^{-1}(\frac{1-i\sqrt[]{3}}{2})=\text{ undefined} \end{gathered}[/tex]There is no solution for x.