х W 50 75 Solve for: W = X= X= Round to the nearest tenth. Given that the triangle is Right-triangle.

To solve for X
X + 90 + 75 = 180° (Sum of interior angle of a triangle)
X + 165 = 180°
Subtract 165 from both-side of the equation
X = 180° - 165°
X = 15°
To solve for x
opposite =50
Adjacent = x
θ=75
Using the trigonometric ratio;
SOH CAH TOA
[tex]\begin{gathered} \tan \theta=\frac{opposite}{\text{adjacent}} \\ \\ \tan 75=\frac{50}{x} \\ \\ x\tan 75=50 \\ \\ x=\frac{50}{\tan 75} \end{gathered}[/tex][tex]x\approx13.4[/tex]To solve for w,
opposite = 50
hypotenuse= w
θ=75
Hence, we will use sine.
[tex]\sin \theta=\frac{\text{opposite}}{\text{hypotenuse}}[/tex][tex]\sin 75=\frac{50}{w}[/tex]Cross-multiply
[tex]w\sin 75=50[/tex]Divide both-side by sin75
[tex]w=\frac{50}{\sin 75}[/tex][tex]w\approx51.8[/tex]