Given:
• Height of image = 8.00 cm
,• Distance from convex = 46.5 cm
,• Focal length = 16.0 cm
Let's find the image distance.
To find the image distance, apply the formula below.
Equation:
[tex]\frac{1}{f}=\frac{1}{v}+\frac{1}{u}[/tex]Required:
f = 16.0 cm
u = 46.5 cm
Let's solve for v
We have:
[tex]\begin{gathered} \frac{1}{16.0}=\frac{1}{46.5}+\frac{1}{v} \\ \\ \frac{1}{v}=\frac{1}{16.0}-\frac{1}{46.5} \\ \\ \frac{1}{v}=\frac{46.5-16}{744}=\frac{30.5}{744} \\ \\ v=\frac{744}{30.5} \\ \\ v=24.4\text{ cm} \end{gathered}[/tex]Now apply the formula to find the height:
[tex]\begin{gathered} h^{\prime}=\frac{-v\times h}{u} \\ \\ h^{\prime}=\frac{-24.4\times8.00}{46.5} \\ \\ h^{\prime}=-4.2\operatorname{cm} \end{gathered}[/tex]Therefore, the distance is 24.4 cm
The height of the object is -4.2 cm
ANSWER:
Given: f = 16.0 cm; u = 46.5 cm, h = 8.00 cm
Required: v and h'
Equations needed:
[tex]\begin{gathered} \frac{1}{f}=\frac{1}{u}+\frac{1}{v} \\ \\ h^{\prime}=\frac{-v\times h}{u} \end{gathered}[/tex]Solution: v = 24.4 cm
h' = -4.2 cm
L-ocation: Behind the mirror
O-rientation: Inverted
S-ize: Reduced
T-ype: Real