Given: Ellie's height function
[tex]\begin{gathered} H(t)=-16t^2+30t+10 \\ H(t)=Height \\ t=time \end{gathered}[/tex]To Determine: The two times when the height was 15 feet
Solution
Given the quadratic formula below
[tex]\begin{gathered} A\text{ quadratic equation below} \\ ax^2+bx+c=0 \\ Using\text{ quadratic formula} \\ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \end{gathered}[/tex]When height is 15 feet
[tex]\begin{gathered} 15=-16t^2+30t+10 \\ 16t^2-30t-10+15=0 \\ 16t^2-30t+5=0 \end{gathered}[/tex]Using quadratic formula
[tex]\begin{gathered} a=16,b=-30,c=5 \\ t=\frac{-(-30)\pm\sqrt{(-30)^2-4\times16\times5}}{2\times16} \end{gathered}[/tex][tex]t=\frac{-\left(-30\right)\pm\:2\sqrt{145}}{2\cdot\:16}[/tex][tex]t_1=\frac{-\left(-30\right)+2\sqrt{145}}{2\cdot \:16},\:t_2=\frac{-\left(-30\right)-2\sqrt{145}}{2\cdot \:16}[/tex][tex]\begin{gathered} t_1=\frac{30+24.083}{32},t_2=\frac{30-24.083}{32} \\ t_1=\frac{54.083}{32},t_2=\frac{6.083}{32} \end{gathered}[/tex][tex]\begin{gathered} t_1=1.69,t_2=0.19 \\ t_1\approx1.7seconds,t_2=0.2seconds \end{gathered}[/tex]Hence, the two times Ellies height was 25 feet is 1.7 seconds and 0.2 seconds