Part 1
Given the coordinates of ABC
A(3,-6), B(0,9), C(2,-1)
If you dilate the figure by a scale factor of 2. the coordinates of A' will be:
[tex]\begin{gathered} A^{\prime}(3\times2,-6\times2) \\ =A^{\prime}(6,-12) \end{gathered}[/tex]
Part 2
Given the coordinates of ABC
A(4,-8), B(2,-4), C(0,4)
If you dilate the figure by a scale factor of 1/4. the coordinates of B' will be:
[tex]\begin{gathered} B^{\prime}(2\times\frac{1}{4},-4\times\frac{1}{4}) \\ =B^{\prime}(\frac{1}{2},-1) \end{gathered}[/tex]
Part 3
Given the coordinates of ABC
A(3,-6), B(0,9), C(2,-1)
If you dilate the figure by a scale factor of 3. the coordinates of C' will be:
[tex]\begin{gathered} C^{\prime}(2\times3,-1\times3) \\ =C^{\prime}^{}(6,-1) \end{gathered}[/tex]
Part 4
Given the coordinates of ABC
A(6,0), B(-4,2), C(-8,-2)
If you dilate the figure by a scale factor of 2 1/2. the coordinates of B' will be:
[tex]\begin{gathered} B^{\prime}(-4\times\frac{5}{2},2\times\frac{5}{2}) \\ =B^{\prime}(-10,5) \end{gathered}[/tex]