(1)Find the coordinates of A' given a dilation of 2A(3,-6), B(0,9), C(2,-1)(2)Find the coordinates of B' given a dilation of 1/4.A(4,-8), B(2,-4), C(0,4)(3)Find the coordinates of C' given k=3.A(3,-6), B(0,9), C(2,-1)(4)Find the coordinates of B' given k=2 1/2A(6,0), B(-4,2), C(-8,-2)

1Find the coordinates of A given a dilation of 2A36 B09 C212Find the coordinates of B given a dilation of 14A48 B24 C043Find the coordinates of C given k3A36 B0 class=

Respuesta :

Part 1

Given the coordinates of ABC

A(3,-6), B(0,9), C(2,-1)

If you dilate the figure by a scale factor of 2. the coordinates of A' will be:

[tex]\begin{gathered} A^{\prime}(3\times2,-6\times2) \\ =A^{\prime}(6,-12) \end{gathered}[/tex]

Part 2

Given the coordinates of ABC

A(4,-8), B(2,-4), C(0,4)

If you dilate the figure by a scale factor of 1/4. the coordinates of B' will be:

[tex]\begin{gathered} B^{\prime}(2\times\frac{1}{4},-4\times\frac{1}{4}) \\ =B^{\prime}(\frac{1}{2},-1) \end{gathered}[/tex]

Part 3

Given the coordinates of ABC

A(3,-6), B(0,9), C(2,-1)

If you dilate the figure by a scale factor of 3. the coordinates of C' will be:

[tex]\begin{gathered} C^{\prime}(2\times3,-1\times3) \\ =C^{\prime}^{}(6,-1) \end{gathered}[/tex]

Part 4

Given the coordinates of ABC

A(6,0), B(-4,2), C(-8,-2)

If you dilate the figure by a scale factor of 2 1/2. the coordinates of B' will be:

[tex]\begin{gathered} B^{\prime}(-4\times\frac{5}{2},2\times\frac{5}{2}) \\ =B^{\prime}(-10,5) \end{gathered}[/tex]

RELAXING NOICE
Relax