Respuesta :

Given:

There are given that the MN is the midsegment of the trapezoid ABCD.

Explanation:

According to the question:

We need to find the value of segment AB:

So,

From the formula of a segment of midpoint:

[tex]MN=\frac{1}{2}(AB+CD)[/tex]

Then,

Put the value of the segment of MN and CD:

So,

[tex]\begin{gathered} \begin{equation*} MN=\frac{1}{2}(AB+CD) \end{equation*} \\ 7=\frac{1}{2}(AB+6) \end{gathered}[/tex]

Then,

[tex]\begin{gathered} 7=\frac{1}{2}(AB+6) \\ 14=AB+6 \\ AB=14-6 \\ AB=8 \end{gathered}[/tex]

Final answer:

Hence, the correct option is A.

RELAXING NOICE
Relax