Select the correct answer.MN is the midsegment of the trapezoid ABCD. What is the length of segment AB?D6CMe7NAOA 8OB. 91014OD.

Given:
There are given that the MN is the midsegment of the trapezoid ABCD.
Explanation:
According to the question:
We need to find the value of segment AB:
So,
From the formula of a segment of midpoint:
[tex]MN=\frac{1}{2}(AB+CD)[/tex]Then,
Put the value of the segment of MN and CD:
So,
[tex]\begin{gathered} \begin{equation*} MN=\frac{1}{2}(AB+CD) \end{equation*} \\ 7=\frac{1}{2}(AB+6) \end{gathered}[/tex]Then,
[tex]\begin{gathered} 7=\frac{1}{2}(AB+6) \\ 14=AB+6 \\ AB=14-6 \\ AB=8 \end{gathered}[/tex]Final answer:
Hence, the correct option is A.