Drag the tiles to the correct boxes to complete the pairs.

Answer::
[tex]\begin{gathered} q(x)=x^2-4x+1 \\ r(x)=0 \\ b(x)=x-3 \end{gathered}[/tex]Explanation:
Given the quotient:
[tex]\frac{x^{3}-7 x^{2}+13 x-3}{x-3}[/tex]We want to rewrite the quotient in the form:
[tex]q(x)+\frac{r(x)}{b(x)}[/tex]First, we use the long division method to first divide.
Therefore:
[tex]\frac{x^{3}-7x^{2}+13x-3}{x-3}=x^2-4x+1+\frac{0}{x-3}[/tex]We thus have the following:
[tex]\begin{gathered} q(x)=x^2-4x+1 \\ r(x)=0 \\ b(x)=x-3 \end{gathered}[/tex]