Respuesta :

Answer::

[tex]\begin{gathered} q(x)=x^2-4x+1 \\ r(x)=0 \\ b(x)=x-3 \end{gathered}[/tex]

Explanation:

Given the quotient:

[tex]\frac{x^{3}-7 x^{2}+13 x-3}{x-3}[/tex]

We want to rewrite the quotient in the form:

[tex]q(x)+\frac{r(x)}{b(x)}[/tex]

First, we use the long division method to first divide.

Therefore:

[tex]\frac{x^{3}-7x^{2}+13x-3}{x-3}=x^2-4x+1+\frac{0}{x-3}[/tex]

We thus have the following:

[tex]\begin{gathered} q(x)=x^2-4x+1 \\ r(x)=0 \\ b(x)=x-3 \end{gathered}[/tex]

Ver imagen DiamonteI316734
RELAXING NOICE
Relax