Answer:
• x=-1
,• y=-3
Explanation:
Given the system of equations:
[tex]\begin{gathered} -2x+4y=-10 \\ 2x+2y=-8 \end{gathered}[/tex]Add the two equations to eliminate x:
[tex]\begin{gathered} 4y+2y=-10+(-8) \\ 6y=-18 \end{gathered}[/tex]Divide both sides by 6:
[tex]\begin{gathered} \frac{6y}{6}=-\frac{18}{6} \\ y=-3 \end{gathered}[/tex]Next, substitute y=-3 into any of the equations to solve for x:
[tex]\begin{gathered} 2x+2y=-8 \\ 2x+2(-3)=-8 \\ 2x-6=-8 \\ 2x=-8+6 \\ 2x=-2 \\ x=-\frac{2}{2} \\ x=-1 \end{gathered}[/tex]The solution to the system of equation is: x=-1 and y=-3