Respuesta :

Answer:

• x=-1

,

• y=-3

Explanation:

Given the system of equations:

[tex]\begin{gathered} -2x+4y=-10 \\ 2x+2y=-8​ \end{gathered}[/tex]

Add the two equations to eliminate x:

[tex]\begin{gathered} 4y+2y=-10+(-8) \\ 6y=-18 \end{gathered}[/tex]

Divide both sides by 6:

[tex]\begin{gathered} \frac{6y}{6}=-\frac{18}{6} \\ y=-3 \end{gathered}[/tex]

Next, substitute y=-3 into any of the equations to solve for x:

[tex]\begin{gathered} 2x+2y=-8​ \\ 2x+2(-3)=-8​ \\ 2x-6=-8​ \\ 2x=-8​+6 \\ 2x=-2 \\ x=-\frac{2}{2} \\ x=-1 \end{gathered}[/tex]

The solution to the system of equation is: x=-1 and y=-3

RELAXING NOICE
Relax