Respuesta :

The answer is -20p⁵ - 15p⁴ + 5p³

Distribute:
-5p³(4p² + 3p - 1) = (-5p³) * 4p² + (-5p³) * 3p - (-5p³) * 1 =
                             = (-20p³⁺²) + (-15p³⁺¹) - (-5p³) =
                             = -20p⁵ - 15p⁴ + 5p³

Answer:

The product of the given expression [tex]-5p^3(4p^2+3p-1)[/tex] is [tex]-20p^5-15p^4+5p^3[/tex]

Step-by-step explanation:

 Consider the given expression [tex]-5p^3(4p^2+3p-1)[/tex]

We have to find the product of given expression [tex]-5p^3(4p^2+3p-1)[/tex]

Distributive property  : [tex]a\cdot(b+c)=(a\cdot b)+(a\cdot c)[/tex]

Applying distributive property, we get,

[tex]-5p^3(4p^2+3p-1)=(-5p^3 \cdot 4p^2)+(-5p^3 \cdot 3p)+(-5p^3 \cdot -1)[/tex]

Simplifying further , we get,

Applying property of exponent , [tex]a^n\cdot a^m=a^{m+n}[/tex]

[tex](-5p^3 \cdot 4p^2)+(-5p^3 \cdot 3p)+(-5p^3 \cdot -1)=-20p^5-15p^4+5p^3[/tex]

Thus, the product of the given expression [tex]-5p^3(4p^2+3p-1)[/tex] is [tex]-20p^5-15p^4+5p^3[/tex]