Find the volume of the composite figure. Round to the nearest tenth (Hint: Volume of a cone is V= } xrh.)6 cm2 cm

ANSWER:
The volume of the figure is cubic centimeters
STEP-BY-STEP EXPLANATION:
The total volume of the figure would be the sum of the volume of the cone and the volume of the cylinder that make up the figure.
Therefore,
The volume of the cone is:
[tex]\begin{gathered} V_{\text{cone}}=\frac{1}{3}\cdot\pi\cdot r^2\cdot h \\ \text{replacing} \\ V_{\text{cone}}=\frac{1}{3}\cdot3.14\cdot2^2\cdot3 \\ V_{\text{cone}}=12.56 \end{gathered}[/tex]The volume of the cylinder is:
[tex]\begin{gathered} V_{\text{cylinder}}=\pi\cdot r^2\cdot h \\ \text{replacing} \\ V_{\text{cylinder}}=3.14\cdot2^2\cdot6 \\ V_{\text{cylinder}}=75.36 \end{gathered}[/tex]The volume of the figure would then be:
[tex]\begin{gathered} V=V_{\text{cone}}+V_{\text{cylinder}} \\ V=12.56+75.36 \\ V=87.92 \end{gathered}[/tex]