Given data:
The sum of the first 10 terms of an arithmetic progression = 40
The first term is -5
Using the formula to get the sum of an arithmetic term
[tex]S_n=\frac{n}{2}\lbrack2a+(n-1)d\rbrack[/tex]from the above formula
[tex]\begin{gathered} a=-5 \\ n=10 \\ S_n=40 \\ d\text{ is unknown} \end{gathered}[/tex]Method: substitute the values and make d the subject of the formula
[tex]40=\frac{10}{2}\lbrack2\times-5+(10-1)\times d\rbrack[/tex]=>
[tex]40=5(-10+9d)[/tex]=> divide both sides by 5
[tex]\frac{40}{5}=\frac{5(-10+9d)}{5}[/tex]=>
[tex]8=-10+9d[/tex]=> collect like terms
9d=10+8
=>
9d=18
=>Divide both sides by 9
[tex]d=\frac{18}{9}=2[/tex]Therefore the common difference is 2