Respuesta :

Given data:

The sum of the first 10 terms of an arithmetic progression = 40

The first term is -5

Using the formula to get the sum of an arithmetic term

[tex]S_n=\frac{n}{2}\lbrack2a+(n-1)d\rbrack[/tex]

from the above formula

[tex]\begin{gathered} a=-5 \\ n=10 \\ S_n=40 \\ d\text{ is unknown} \end{gathered}[/tex]

Method: substitute the values and make d the subject of the formula

[tex]40=\frac{10}{2}\lbrack2\times-5+(10-1)\times d\rbrack[/tex]

=>

[tex]40=5(-10+9d)[/tex]

=> divide both sides by 5

[tex]\frac{40}{5}=\frac{5(-10+9d)}{5}[/tex]

=>

[tex]8=-10+9d[/tex]

=> collect like terms

9d=10+8

=>

9d=18

=>Divide both sides by 9

[tex]d=\frac{18}{9}=2[/tex]

Therefore the common difference is 2

RELAXING NOICE
Relax