Respuesta :

The quotient is given to be:

[tex]\sqrt{x+2}\div \sqrt{5-x}[/tex]

Rewrite the expression:

[tex]\Rightarrow\frac{\sqrt{x+2}}{\sqrt{5-x}}=\sqrt{\frac{x+2}{5-x}}[/tex]

The quotient will be defined under the following condition:

[tex]\frac{x+2}{5-x}\ge0[/tex]

The inequality will work if:

[tex]x+2\ge0\text{ or }5-x\ge0[/tex]

Hence, we can get the interval to be:

[tex]\begin{gathered} x\ge-2 \\ or \\ x\leq5 \end{gathered}[/tex]

The inequality will be undefined at the point:

[tex]\begin{gathered} 5-x=0 \\ \therefore \\ x=5 \end{gathered}[/tex]

Therefore, the function will be defined over the interval:

[tex]-2\leq x<5[/tex]

OPTION C is correct.

RELAXING NOICE
Relax