Which inequality represents all values of x for which the quotient below is defined?A.-2 x 5B.x -2C.-2 x < 5D.x 5

The quotient is given to be:
[tex]\sqrt{x+2}\div \sqrt{5-x}[/tex]Rewrite the expression:
[tex]\Rightarrow\frac{\sqrt{x+2}}{\sqrt{5-x}}=\sqrt{\frac{x+2}{5-x}}[/tex]The quotient will be defined under the following condition:
[tex]\frac{x+2}{5-x}\ge0[/tex]The inequality will work if:
[tex]x+2\ge0\text{ or }5-x\ge0[/tex]Hence, we can get the interval to be:
[tex]\begin{gathered} x\ge-2 \\ or \\ x\leq5 \end{gathered}[/tex]The inequality will be undefined at the point:
[tex]\begin{gathered} 5-x=0 \\ \therefore \\ x=5 \end{gathered}[/tex]Therefore, the function will be defined over the interval:
[tex]-2\leq x<5[/tex]OPTION C is correct.