The given equation of BSA is
[tex]\text{BSA}=\sqrt[]{\frac{wh}{3600}}[/tex]
w is the weight in kg
h is the height in cm
a. We need to find the height when
w = 76 kg
BSA = 1.8
Substitute them in the rule above to find h
[tex]1.8=\sqrt[]{\frac{76(h)}{3600}}[/tex]
Square both sides to cancel the square root
[tex]\begin{gathered} (1.8)^2=\lbrack\sqrt[]{\frac{76(h)}{3600}}\rbrack^2 \\ 3.24=\frac{76h}{3600} \end{gathered}[/tex]
Multiply both sides by 3600
[tex]\begin{gathered} 3.24(3600)=\frac{76h}{3600}(3600) \\ 11664=76h \end{gathered}[/tex]
Divide both sides by 76 to find h
[tex]\begin{gathered} \frac{11664}{76}=\frac{76h}{76} \\ 153.4736842=h \end{gathered}[/tex]
Round it to the nearest cm
h = 153 cm
b. We need to find the weight when
h = 164 cm
BSA = 2.1
Substitute them in the equation
[tex]2.1=\sqrt[]{\frac{164w}{3600}}[/tex]
We will do the same steps above
[tex]\begin{gathered} (2.1)^2=\lbrack\sqrt[]{\frac{164w}{3600}}\rbrack^2 \\ 4.41=\frac{164w}{3600} \end{gathered}[/tex][tex]\begin{gathered} 4.41(3600)=\frac{164w}{3600}(3600) \\ 15876=164w \end{gathered}[/tex][tex]\begin{gathered} \frac{15876}{164}=\frac{164w}{164} \\ 96.80487805=w \end{gathered}[/tex]
Round it to the nearest kg
w = 97 kg