.Given:
The radius of the disk is,
[tex]\begin{gathered} r=\frac{12.0}{2}\text{ cm} \\ =6.0\text{ cm} \\ =0.06\text{ m} \end{gathered}[/tex]The angular speed is
[tex]\omega=34.6\text{ rad/s}[/tex](a)
the linear speed at a point on the outer rim is,
[tex]\begin{gathered} v=\omega r \\ =34.6\times0.06 \\ =2.07\text{ m/s} \end{gathered}[/tex]Hence the linear speed is 2.07 m/s.
(b)
The centripetal acceleration is,
[tex]\begin{gathered} a=\frac{v^2}{r} \\ =\frac{2.07\times2.07}{0.06} \\ =71.4m/s^2 \end{gathered}[/tex]Hence the acceleration is 71.4 m/s^2.
(c)
The linear speed at halfway between the center and the outer rim is
[tex]\begin{gathered} v_1=\omega\frac{r}{2} \\ =34.6\times\frac{0.06}{2} \\ =1.04\text{ m/s} \end{gathered}[/tex]The centripetal acceleration is,
[tex]\begin{gathered} a_1=\frac{(v_1)^2^{}^{}_{}}{\frac{r}{2}} \\ =\frac{1.04\times1.04}{\frac{0.06}{2}} \\ =36.0m/s^2 \end{gathered}[/tex]Hence the linear speed is 1.04 m/s, and the centripetal acceleration is 36.0 m/s^2.