We have the next polynomial equation
[tex]\mleft(x^2-9\mright)\mleft(x^2+4\mright)=0[/tex]First we will solve because if this binomial is zero all the polynomial expression is zero
[tex]\mleft(x^2-9\mright)=0[/tex][tex]\begin{gathered} x^2=9 \\ x=\pm\sqrt[]{9} \\ x=\pm3 \end{gathered}[/tex]the first two solutions are x=3, x=-3
For the second binomial
[tex](x^2+4)=0[/tex][tex]\begin{gathered} x^2=-4 \\ x=\pm\sqrt[]{-4} \\ x\pm2i \end{gathered}[/tex]the other solutions are x=2i, x=-2i
The solutions of the polynomial equation are
x=3
x=-3
x=2i
x=-2i