Part A. We are given the distance that light travels in one year. To determine the distance equivalent to 4.35 light-years we need to use the following relationship:
[tex]4.35\text{ light years}\times\frac{9.461\times10^{15}m}{1light\text{ year}}[/tex]
Solving the operations we get:
[tex]4.35\text{ light years=4.12}\times10^{16}m[/tex]
Part B. To convert this distance into kilometers we will use the following conversion factor:
[tex]1km=1000m[/tex]
Using the conversion factor we get:
[tex]4.12\times10^{16}m\times\frac{1\operatorname{km}}{1000m}=4.12\times10^{13}\operatorname{km}[/tex]
Part C. To convert the distance into miles we will use the following conversion factor
[tex]1mile=1.6\operatorname{km}[/tex]
using the conversion factor:
[tex]4.12\times10^{13}\operatorname{km}\times\frac{1mile}{1.6\operatorname{km}}=2.57\times10^{16}miles[/tex]
Part D. Given the velocity we can determine time using the following equation:
[tex]t=\frac{d}{v}[/tex]
Where "t" is time, "d" is distance and "v" is velocity. Replacing the values we get:
[tex]t=\frac{2.57\times10^{16}miles}{400\text{ miles/h}}[/tex]
Solving the operation we get:
[tex]t=6.43\times10^{13}hours[/tex]