Given:
The population P (in thousands) of a country can be modeled by the function below, where t is time in years, with t = 0 corresponding to 1980.
[tex]P=-14.04t^2+781.17t+167,983[/tex]
Part A:
we will find P for t = 0, 10, 15, 20, and 25.
So, substitute each value of (t) and calculate the corresponding value of P as follows:
[tex]\begin{gathered} t=0\rightarrow P=-14.04(0)^2+781.17(0)+167,983=167983 \\ t=10\rightarrow P=-14.04(10)^2+781.17(10)+167,983=174390 \\ t=15\rightarrow P=-14.04(15)^2+781.17(15)+167,983=176540.5 \\ t=20\rightarrow P=-14.04(20)^2+781.17(20)+167,983=177989 \\ t=25\rightarrow P=-14.04(25)^2+781.17(25)+167,983=178735.5 \end{gathered}[/tex]
So, the answer will be:
P(0) = 167983
P(10) = 174390
P(15) = 176540.5
P(20) = 177989
P(25) = 178735.5
===========================================================
Part B:
We will find the population growth rate dP/dt:
So, we will find the first derivative from the given equation as follows:
[tex]\begin{gathered} \frac{dP}{dt}=-14.04(2t)+781.1(1)+0 \\ \end{gathered}[/tex]
So, the answer will be:
[tex]\frac{dP}{dt}=-28.08t+781.1[/tex]
==========================================================
Part C:
We will evaluate dP/dt for the same values as in part A
So, we will find dP/dt for t = 0, 10, 15, 20, and 25.
So, substitute each value of (t) and calculate the corresponding value of dP/dt as follows:
[tex]\begin{gathered} t=0\rightarrow\frac{dP}{dt}=-28.08(0)+781.1=781.1 \\ \\ t=10\rightarrow\frac{dP}{dt}=-28.08(10)+781.1=500.3 \\ \\ t=15\rightarrow\frac{dP}{dt}=-28.08(15)+781.1=359.9 \\ \\ t=20\rightarrow\frac{dP}{dt}=-28.08(20)+781.1=219.5 \\ \\ t=25\rightarrow\frac{dP}{dt}=-28.08(25)+781.1=79.1 \end{gathered}[/tex]
So, the answer will be:
P'(0) = 781.1
P'(10) = 500.3
P'(15) = 359.9
P'(20) = 219.5
P'(25) = 79.1
The rate of growth is decreasing.