SOLUTION
The equation of a line in point-slope form is given by the formula
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \text{Where m = slope } \end{gathered}[/tex]From what we are given,
[tex]\begin{gathered} m=-\frac{7}{6} \\ x_1=8 \\ y_1=18 \end{gathered}[/tex]Substituting the values, we have
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-18=-\frac{7}{6}(x-8) \\ y-18=-\frac{7}{6}x+\frac{28}{3} \\ y=-\frac{7}{6}x+\frac{28}{3}+18 \\ y=-\frac{7}{6}x+\frac{82}{3} \end{gathered}[/tex]Hence, the answer is
[tex]y=-\frac{7}{6}x+\frac{82}{3}[/tex]