The graph of a function f is shown above. If lim f (x) exists, and f is not continuous at2= b, then b=

Recall that
[tex]\lim_{x\to b}f(x)[/tex]exists if and only if:
[tex]\lim_{x\to b^-}f(x)=\lim_{x\to b+}f(x).[/tex]Now, from the given graph we get that:
[tex]\begin{gathered} \lim_{x\to0^+}f(x)=2, \\ \lim_{x\to0^-}f(x)=2, \end{gathered}[/tex]Then:
[tex]\lim_{x\to0^-}f(x)=\lim_{x\to0^+}f(x).[/tex]Therefore:
[tex]\lim_{x\to0}f(x)[/tex]exists.
Now, from the given graph we get that:
[tex]f(0)<2.[/tex]Therefore f(x) is not continuous at x=0.
Answer: b=0.