We have a quadratic equation and we have to find the zeros.
We can start by simplyfing:
[tex]\begin{gathered} f(x)=8x^2-4x+10=0 \\ 2(4x^2-2x+5)=0 \\ 4x^2-2x+5=0 \end{gathered}[/tex]Then, we apply the quadratic formula:
[tex]\begin{gathered} x=\frac{-(-2)}{2\cdot4}\pm\frac{\sqrt[]{(-2)^2-4\cdot4\cdot5}}{2\cdot4}=\frac{2}{8}\pm\frac{\sqrt[]{4-80}}{8}=\frac{1}{4}\pm\frac{\sqrt[]{-76}}{8} \\ x=\frac{1}{4}\pm\frac{\sqrt[]{76(-1)}}{8}=\frac{1}{4}\pm\frac{\sqrt[]{76}}{8}\cdot i=\frac{1}{4}\pm\frac{\sqrt[]{4\cdot19}}{8}\cdot i=\frac{1}{4}\pm\frac{1}{4}\sqrt[]{19}i \end{gathered}[/tex][tex]\begin{gathered} x_1=\frac{1}{4}+\frac{1}{4}\sqrt[]{19}i\approx0.25+1.09i \\ x_2=\frac{1}{4}-\frac{1}{4}\sqrt[]{19}i\approx0.25-1.09i \end{gathered}[/tex]The roots are imaginary.
Their values are approximately x1=0.25+1.09i and x2=0.25-1.09i.