π/6 and 5π/6 radians
Given the trigonometry expression
[tex]2\sin ^2x=\sin x[/tex]Let P = sin(x) to have:
[tex]\begin{gathered} 2P^2=P \\ 2P=1 \\ P=\frac{1}{2} \end{gathered}[/tex]Substitute P = sin(x) into the resulting expression;
[tex]\begin{gathered} \text{sin(x)}=\frac{1}{2} \\ x=\text{sin}^{-1}(\frac{1}{2}) \\ x=30^0=\frac{\pi}{6} \end{gathered}[/tex]Since the equation is over the interval [0, 2 π) and sin(theta) is positive in the 2nd quadrant, hence other angles will be expressed as:
[tex]\begin{gathered} x_2=180-\theta \\ x_2=180-30 \\ x_2=150^0=\frac{5\pi}{6} \end{gathered}[/tex]Therefore the exact solutions over the interval [0, 2 π) are π/6 and 5π/6 radians respectively