How many real solutions does the equation V2 = I + 1 have?OA. 0OB.1OC.2OD.cannot be determined from the graph

Try to find x from the equality
[tex]x+1=\sqrt[]{x-2}[/tex][tex]\begin{gathered} (x+1)^2=x-2 \\ x^2+2x+1=x-2 \\ x^2+2x-x+1+2=0 \\ x^2+x+3=0 \end{gathered}[/tex]we can use this equation to solve x
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]were a =1, b=1 and c=3
so replacing
[tex]\begin{gathered} x=\frac{-1\pm\sqrt[]{1^2-4(1)(3)}}{2(1)} \\ \\ x=\frac{-1\pm\sqrt[]{1-12}}{2} \\ \\ x=\frac{-1\pm\sqrt[]{-11}}{2} \end{gathered}[/tex]the negative number within the root indicates that the solution is imaginary
so the solution can not be determined from the graph