Respuesta :

Solution:

Given:

[tex]\frac{f(x)}{x+1}=3x^2-9x-2+\frac{7}{x+1}[/tex]

To get the function f(x),

We can use the comparison of converting mixed numbers to an improper fraction as shown below;

[tex]a\frac{b}{x}=\frac{(a\times x)+b}{x}[/tex]

Hence, following this conversion above,

[tex]\begin{gathered} \frac{f(x)}{x+1}=\frac{(3x^2-9x-2)(x+1)+7}{x+1} \\ \frac{f(x)}{x+1}=\frac{(3x^3-9x^2-2x+3x^2-9x-2)+7}{x+1} \\ \frac{f(x)}{x+1}=\frac{(3x^3-9x^2+3x^2-2x-9x-2)+7}{x+1} \\ \frac{f(x)}{x+1}=\frac{(3x^3-6x^2-11x-2)+7}{x+1} \\ \frac{f(x)}{x+1}=\frac{3x^3-6x^2-11x-2+7}{x+1} \\ \frac{f(x)}{x+1}=\frac{3x^3-6x^2-11x+5}{x+1} \\ \\ \text{Comparing both sides of the equation, then } \\ f(x)=3x^3-6x^2-11x+5 \end{gathered}[/tex]

Therefore, the function f(x) is;

[tex]3x^3-6x^2-11x+5[/tex]

RELAXING NOICE
Relax