Respuesta :

blaze4
You don't need to use info for p(C)
Ver imagen blaze4

Answer:

0.30

Step-by-step explanation:

By the conditional probability formula,

[tex]P(\frac{C}{D})=\frac{P(C\cap D)}{P(D)}[/tex]

We have,

P(D) = 0.5  and P(C / D) = 0.6

By substituting the values,

[tex]0.6=\frac{P(C\cap D)}{0.5}[/tex]

[tex]\implies P(C\cap D) = 0.6\times 0.5 = 0.30[/tex]

Hence, P(C and D) is 0.30.