Respuesta :

Answer:

x=3 and y=-6.

Explanation:

Given the system of linear equations:

[tex]\begin{gathered} x+y=-3 \\ 3x+y=3 \end{gathered}[/tex]

To solve the system using the substitution method, we follow the steps below:

Step 1: Make x the subject in the first equation

[tex]\begin{gathered} x+y=-3 \\ x=-3-y \end{gathered}[/tex]

Step 2: Substitute x=-3-y into the second equation

[tex]\begin{gathered} 3x+y=3 \\ 3(-3-y)+y=3 \end{gathered}[/tex]

Step 3: Solve the equation for y.

[tex]\begin{gathered} -9-3y+y=3 \\ -2y=3+9 \\ -2y=12 \\ y=\frac{12}{-2} \\ y=-6 \end{gathered}[/tex]

Step 4: Solve for x using any of the equations.

[tex]\begin{gathered} x=-3-y \\ =-3-(-6) \\ =-3+6 \\ x=3 \end{gathered}[/tex]

The solutions to the system of equations are x=3 and y=-6.

RELAXING NOICE
Relax