Solve this system of equations usingthe substitution method.y = x - 14x + 8 = y=([?], [])

Answer:
(-3,-4)
Explanation:
Given the system of equations:
[tex]\begin{gathered} y=x-1\cdots(1) \\ 4x+8=y\cdots(2) \end{gathered}[/tex]Substitute equation (1) into equation (2):
[tex]\begin{gathered} 4x+8=y\operatorname{\cdots}(2) \\ 4x+8=x-1 \end{gathered}[/tex]Solve the resulting equation for x:
[tex]\begin{gathered} \text{Subtract x from both sides:} \\ 4x-x+8=x-x-1 \\ 3x+8=-1 \\ \text{Subtract 8 from both s}\imaginaryI\text{des} \\ 3x+8-8=-1-8 \\ 3x=-9 \\ \text{ Divide both sides by 3} \\ \frac{3x}{3}=-\frac{9}{3} \\ x=-3 \end{gathered}[/tex]Using equation (1), solve for y:
[tex]\begin{gathered} y=x-1 \\ =-3-1 \\ =-4 \end{gathered}[/tex]The solution to the system of linear equation is (x,y)=(-3,-4).