Given:
Area = 5.0 cm²
Uniform charges = +8.4 pC or -8.4 pC
Perendicular distance = 1.0 mm
Let's find the potential difference across the metallic plates.
To find the potential difference, apply the formula:
[tex]V=\frac{Q}{C}[/tex]Where:
V is the potential difference
Q is the charge = 8.4 pC
C is the capacitance.
To find C, apply the formula:
[tex]\begin{gathered} C=\frac{E_oA}{D} \\ \end{gathered}[/tex]Where:
Eo = 8.85 x 10⁻¹² f/m
A is the area
D is the distance.
Thus, we have:
[tex]\begin{gathered} C=\frac{(8.85\times10^{-12})(5.0\times10^{-4})}{1.0\times10^{-3}} \\ \\ C=4.425\times10^{-12}\text{ F} \end{gathered}[/tex]Now, to find the potential difference, we have:
[tex]\begin{gathered} V=\frac{Q}{C} \\ \\ V=\frac{8.4\times10^{-12}}{4.425\times10^{-12}} \\ \\ V=1.89\text{ V }\approx1.9\text{ V} \end{gathered}[/tex]The potential difference across the metallic plates is 1.9 volts
ANSWER:
[tex]1.9\text{ V}[/tex]