Respuesta :

Given:

[tex]f(x)=\frac{1}{4x+10}[/tex]

Required:

To find the inverse of a givne function.

Explanation:

Consider the given function

[tex]f(x)=\frac{1}{4x+10}[/tex][tex]y=\frac{1}{4x+10}[/tex]

Swap x and y, we get

[tex]x=\frac{1}{4y+10}[/tex]

Now solve for y.

[tex]\begin{gathered} 4y+10=\frac{1}{x} \\ \\ 4y=\frac{1}{x}-10 \\ \\ y=\frac{1}{4x}-\frac{10}{4} \\ \\ y=\frac{1}{4x}-\frac{5}{2} \end{gathered}[/tex]

Now

[tex]\begin{gathered} f^{-1}(x)=\frac{1}{4x}-\frac{5}{2} \\ \\ =\frac{1-10x}{4x} \end{gathered}[/tex]

Final Answer:

[tex]f^{-1}(x)=\frac{1}{4x}-\frac{5}{2}[/tex]

RELAXING NOICE
Relax