One factor of the function f(x)=3^3-9x^2+20x-12 is (x-6). Describe how to find the x-intercept and the y-intercept of the graph of f(x) without using technology. Show your work and include all intercepts in your answer.

Given:
[tex]f(x)=x^3-9x^2+20x-12[/tex]For y intercept the value of x=0
then :
[tex]\begin{gathered} f(x)=y \\ f(x)=x^3-9x^2+20x-12 \\ y=(0)^3-9(0)^2+20(0)-12 \\ y=-12 \\ y=-12 \end{gathered}[/tex]so y -intercept is -12.
For x intercept the value of y is zero.
[tex]\begin{gathered} y=x^3-9x^2+20x-12 \\ y=0 \\ x^3-9x^2+20x-12=0 \end{gathered}[/tex]If one factor is (x-6) then other factor is:
[tex]=\frac{x^3-9x^2+20x-12}{x-6}[/tex]So all factor is:
[tex]\begin{gathered} (x-6)(x^2-3x+2)=0 \\ x=6 \\ x^2-3x+2=0 \end{gathered}[/tex]one x intercept 6 and another intercept is:
[tex]\begin{gathered} x^2-3x+2=0 \\ x^2-2x-x+2=0 \\ x(x-2)-1(x-2)=0 \\ (x-2)(x-1)=0 \\ x=2 \\ x=1 \end{gathered}[/tex]So x - intercept of graph is
1,2,6