1) List the known and unknown quantities.
Sample: gas.
Volume: 500 mL.
Pressure: 740 mmHg
Temperature: 25 ºC.
Vapor pressure at 25 ºC: 24 mmHg.
2) Pressure of the gas.
[tex]P_{gas}=P_{atm}-P_{water\text{ }vapor}[/tex][tex]P_{gas}=740\text{ }mmHg-24\text{ }mmHg[/tex][tex]P_{gas}=716\text{ }mmHg[/tex]The pressure of the gas is 716 mmHg
3) Moles of gas
3.1- List the known quantities.
Volume: 500 mL.
Temperature: 25 ºC.
Pressure: 716 mmHg.
Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).
3.2- Set the equation.
[tex]PV=nRT[/tex]3.3- Convert the units of the volume, the temperature, and the pressure.
Volume.
1 L = 1000 mL
[tex]L=500\text{ }mL*\frac{1\text{ }L}{1000\text{ }mL}=0.500\text{ }L[/tex]Temperature.
[tex]K=25\text{ }ºC+273.15\text{ }K[/tex][tex]K=298.15\text{ }K[/tex]Pressure
1 atm = 760 mmHg
[tex]atm=716\text{ }mmHg*\frac{1\text{ }atm}{760\text{ }mmHg}=0.942\text{ }atm[/tex]3.4- Plug in the know quantities in the ideal gas equation.
[tex](0.942\text{ }atm)(0.500\text{ }L)=n*(0.082057\text{ }L*atm*K^{-1}*mol^{-1})(298.15\text{ }K)[/tex]3.5- Solve for n (moles).
Divide both sides by (0.082057 L * atm * K^(-1) * mol^(-1)) * (298.15 K)
[tex]\frac{(0.942atm)(0.500L)}{(0.082057\text{ }L*atm*K^{-1}mol^{-1})(298.15K)}=\frac{n(0.082057\text{ }L*atm*K^{-1}mol^{-1})(298.15K)}{(0.082057\text{ }L*atm*K^{-1}mol^{-1})(298.15K)}[/tex][tex]n=\frac{(0.942atm)(0.500L)}{(0.082057L*atm*K^{-1}*mol^{-1})(298.15K)}=[/tex][tex]n=0.0193\text{ }mol[/tex]
4) Dry volume at STP
STP conditions are
Temperature: 273 K
Pressure: 1 atm.
At STP conditions 1 mol of a gas occuppies 22.4 L. We can use this as a conversion factor.
1 mol gas = 22.4 L
[tex]V=0.0193\text{ }mol\text{ }gas*\frac{22.4\text{ }L}{1\text{ }mol\text{ }gas}=0.432\text{ }L[/tex]The volume of the dry gas at STP is 0.432 L.
.