The function xalogos x is increasing. O A. True ОО O B. False

Given:
[tex]F(x)=\log_{0.5}x[/tex]To check: The function is increasing or not
Explanation:
It can be written as,
[tex]\begin{gathered} F(x)=\log_{\frac{1}{2}}(x) \\ F(x)=-\log_2(x)............(1) \end{gathered}[/tex]Using the differentiation rule for log function,
[tex]\frac{d}{dx}(\log_ax)=-\frac{1}{xloga}[/tex]So, the differentiating the function (1) we get,
[tex]\begin{gathered} \frac{d}{dx}(F\left(x\right))=\frac{d}{dx}(-\log_2\left(x\right)) \\ =-\frac{1}{xlog2} \\ <0 \end{gathered}[/tex]We know that,
If the first derivative of the function,
[tex]f^{\prime}\left(x\right)<0[/tex]Then the function is decreasing.
Using this, we conclude that,
The given function is decreasing function.
Final answer: B. False