Respuesta :

Solution:

Given:

From the graph, the vertex is at (0,1)

Using the equation of a parabola in vertex form;

[tex]\begin{gathered} y=a(x-h)^2+k \\ where; \\ (h,k)=(0,1) \\ h=0 \\ k=1 \\ \\ Hence, \\ y=a(x-0)^2+1 \\ y=ax^2+1 \end{gathered}[/tex]

To get the constant a,

[tex]\begin{gathered} Using\text{ the point }(7,-3) \\ x=7 \\ y=-3 \\ \\ y=ax^2+1 \\ -3=a(5^2)+1 \\ -3-1=49a \\ -4=49a \\ -\frac{4}{49}=a \\ a\approx-\frac{1}{12} \end{gathered}[/tex]

Hence, the equation is;

[tex]y=-\frac{1}{12}x^2+1[/tex]

The graph is shown;

Therefore, option A is correct.

Ver imagen CoalO659472
Ver imagen CoalO659472
RELAXING NOICE
Relax