Answer:
(19.3, 20.1)
Explanation:
• Sample Mean = 19.7
,• Sample Standard Deviation = 1.9
,• Sample Size = 79
Since the population standard deviation is not known, we estimate it from the sample standard deviation and then use a t-students distribution to calculate the critical value.
The formula for estimating the population standard deviation is:
[tex]\sigma=\frac{s}{\sqrt{N}}=\frac{1.9}{\sqrt{79}}=0.21[/tex]The degrees of freedom for this sample size is:
[tex]df=N-1=79-1=78[/tex]The t-value for a 95% confidence interval and 78 degrees of freedom is t=1.99.
Thus, the margin of error is:
[tex]MOE=t\times\sigma=1.99\times0.21=0.42[/tex]Thus, the lower and upper bounds of the confidence interval are:
[tex]\begin{gathered} Lower:Mean-MOE=19.7-0.42=19.3 \\ Upper:Mean+MOE=19.7+0.42=20.1 \end{gathered}[/tex]The confidence interval is (19.3, 20.1).