use the given partition and sample points to approximate the definite integral of…

We will employ the formula below:
[tex]\begin{gathered} I=\sum ^{}_{}f(\epsilon_i)\Delta x \\ \text{ Where:} \\ \Delta x=1 \end{gathered}[/tex]This formula gives us an approximate value of our integral.
Given:
[tex]\int ^2_{-2}(x^2-2x+2)dx[/tex]Thus, we have:
[tex]I=-1^2-2(-1)+2\text{ + (0})^2-2(0)+2+\text{ (1})^2-2(1)+2+2^2-2(2)+2=10[/tex]Ans = 10