The rectangular coordinates of the polar form are
[tex]x=r\cos \theta[/tex][tex]y=r\sin \theta[/tex]
a) The first point is
[tex]\begin{gathered} (2,\frac{\pi}{6}) \\ r=2,\theta=\frac{\pi}{6} \end{gathered}[/tex]
Substitute them in the form above
[tex]\begin{gathered} x=2\cos (\frac{\pi}{6})=2(\frac{\sqrt[]{3}}{2})=\sqrt[]{3} \\ y=2\sin (\frac{\pi}{6})=2(\frac{1}{2})1 \\ (x,y)=(\sqrt[]{3},1) \end{gathered}[/tex]
b) The second point is
[tex](2.4,\frac{\pi}{2})[/tex][tex]\begin{gathered} x=2.4\cos (\frac{\pi}{2})=2.4(0)=0 \\ y=2.4\sin (\frac{\pi}{2})=2.4(1)=2.4 \\ (x,y)=(0,2.4) \end{gathered}[/tex]
c) The third point is
[tex](4.4,\frac{13\pi}{12})[/tex][tex]\begin{gathered} x=4.4\cos (\frac{13\pi}{12})=4.4(-\frac{\sqrt[]{6}+\sqrt[]{2}}{4})=(-1.1\sqrt[]{6}-1.1\sqrt[]{2}) \\ y=4.4\sin (\frac{13\pi}{12})=4.4(\frac{-\sqrt[]{6}+\sqrt[]{2}}{4})=(-1.1\sqrt[]{6}+1.1\sqrt[]{2}) \\ (x,y)=\lbrack(-1.1\sqrt[]{6}-1.1\sqrt[]{2}),(-1.1\sqrt[]{6}+1.1\sqrt[]{2})\rbrack \end{gathered}[/tex]
d) The fourth point is
[tex](4.4,\frac{5\pi}{3})[/tex][tex]\begin{gathered} x=4.4\cos (\frac{5\pi}{3})=4.4(\frac{1}{2})=2.2 \\ y=4.4\sin (\frac{5\pi}{3})=4.4(-\frac{\sqrt[]{3}}{2})=-2.2\sqrt[]{3} \\ (x,y)=(2.2,-2.2\sqrt[]{3)} \end{gathered}[/tex]