Respuesta :

we have the expression

[tex]\sum ^{29}_{j\mathop=1}(5j^2-5j+3)[/tex]

Applying property of the summation formula

[tex]\sum ^{29}_{j\mathop{=}1}(5j^2-5j+3)=5\sum ^{29}_{j\mathop{=}1}j^2-5\sum ^{29}_{j\mathop{=}1}j+\sum ^{29}_{j\mathop{=}1}3[/tex]

step 1

Find out

[tex]5\sum ^{29}_{j\mathop{=}1}j^2[/tex]

Applying formulas

[tex]5\sum ^{29}_{j\mathop{=}1}j^2=5\cdot\lbrack\frac{n(n+1)(2n+1)}{6}\rbrack[/tex]

Substitute the value of n=29

[tex]5\sum ^{29}_{j\mathop{=}1}j^2=5\cdot\lbrack\frac{29(29+1)(2(29)+1)}{6}\rbrack=42,775[/tex]

step 2

Find out

[tex]5\sum ^{29}_{j\mathop{=}1}j[/tex]

Applying formulas

[tex]5\sum ^{29}_{j\mathop{=}1}j=5\cdot\lbrack\frac{n(n+1)}{2}\rbrack[/tex]

For n=29

substitute

[tex]5\sum ^{29}_{j\mathop{=}1}j=5\cdot\lbrack\frac{29(29+1)}{2}\rbrack=2,175[/tex]

step 3

Find out

[tex]\sum ^{29}_{j\mathop{=}1}3[/tex]

applying formulas

[tex]\sum ^{29}_{j\mathop{=}1}3=3\cdot n=3\cdot29=87[/tex]

therefore

[tex]\sum ^{29}_{j\mathop{=}1}(5j^2-5j+3)=42,775-2,175+87=40,687[/tex]

the answer is 40,687

RELAXING NOICE
Relax