Find the value of the sum….Use a summation formula, if possible.

we have the expression
[tex]\sum ^{29}_{j\mathop=1}(5j^2-5j+3)[/tex]Applying property of the summation formula
[tex]\sum ^{29}_{j\mathop{=}1}(5j^2-5j+3)=5\sum ^{29}_{j\mathop{=}1}j^2-5\sum ^{29}_{j\mathop{=}1}j+\sum ^{29}_{j\mathop{=}1}3[/tex]step 1
Find out
[tex]5\sum ^{29}_{j\mathop{=}1}j^2[/tex]Applying formulas
[tex]5\sum ^{29}_{j\mathop{=}1}j^2=5\cdot\lbrack\frac{n(n+1)(2n+1)}{6}\rbrack[/tex]Substitute the value of n=29
[tex]5\sum ^{29}_{j\mathop{=}1}j^2=5\cdot\lbrack\frac{29(29+1)(2(29)+1)}{6}\rbrack=42,775[/tex]step 2
Find out
[tex]5\sum ^{29}_{j\mathop{=}1}j[/tex]Applying formulas
[tex]5\sum ^{29}_{j\mathop{=}1}j=5\cdot\lbrack\frac{n(n+1)}{2}\rbrack[/tex]For n=29
substitute
[tex]5\sum ^{29}_{j\mathop{=}1}j=5\cdot\lbrack\frac{29(29+1)}{2}\rbrack=2,175[/tex]step 3
Find out
[tex]\sum ^{29}_{j\mathop{=}1}3[/tex]applying formulas
[tex]\sum ^{29}_{j\mathop{=}1}3=3\cdot n=3\cdot29=87[/tex]therefore
[tex]\sum ^{29}_{j\mathop{=}1}(5j^2-5j+3)=42,775-2,175+87=40,687[/tex]