Given:
[tex]\begin{gathered} a_3=2344 \\ a_{13}=8.029 \end{gathered}[/tex]The recursive formula for the n th term is,
[tex]a_{n-1}=a_0r^{n-1}\text{ ------(1)}[/tex]Here, a0 is the first term and r is the common ratio.
Now, for a3,
[tex]\begin{gathered} n-1=3 \\ n=4 \end{gathered}[/tex]For a13,
[tex]\begin{gathered} n-1=13 \\ n=14 \end{gathered}[/tex]Now, we can write
[tex]\begin{gathered} \frac{a_{13}}{a_3}=\frac{8.029}{2344} \\ \frac{a_0r^{13}}{a_0r^3}=\frac{8.029}{2344} \\ \frac{r^{13}}{r^3}=\frac{8.029}{2344} \\ r^{13-3}=\frac{8.029}{2344} \\ r^{10}=\frac{8.029}{2344} \\ r=0.567 \end{gathered}[/tex]The common ratio is 0.567.
The expression for fourth term a3 is,
[tex]\begin{gathered} a_3=a_{4-1} \\ a_3=a_0r^{\mleft\{4-1\mright\}} \\ a_3=a_0r^3 \end{gathered}[/tex]Hence,
[tex]\begin{gathered} 2344=a_0(0.567)^3 \\ a_0=\frac{2344}{_{}(0.567)^3} \\ =12859 \end{gathered}[/tex]So, the first term is a0=12859.
So, put a=12859 and r=0.567 in equation (1) to get the explicit formula for the geometric sequence.
[tex]a_{n-1}=12859(0.567)^{n-1}[/tex]