Complete the polar form of z.Imaginary axis10181614142iReal axis10-10 -8-6-4-202.46 800-21-41-61N-81-101Write your answers as decimals rounded to the nearest tenth. Express the argument o indegrees, with 0° so < 360°.(cos O + isinSubmit

Answer:
[tex](\sqrt{16+(-6i)^2},\tan^{-1}(-\frac{3i}{2}))[/tex]Step-by-step explanation:
To convert from Cartesian coordinates to polar coordinates:
[tex]\begin{gathered} r=\sqrt{x^2+y^2} \\ \theta=\tan^{-1}(\frac{y}{x}) \\ \text{ Polar coordinates would be:} \\ (r,\theta) \end{gathered}[/tex]Therefore, for the given coordinate:
[tex]z(4,\text{ -6i\rparen}[/tex][tex]\begin{gathered} r=\sqrt{4^2+(-6i)^2} \\ \theta=\tan^{-1}(-\frac{3i}{2}) \end{gathered}[/tex]Hence, the polar coordinates of the given cartesian coordinates:
[tex](\sqrt{16+(-6i)^2},\tan^{-1}(-\frac{3i}{2}))[/tex]