Respuesta :

We have the following equation

[tex]s(t)=t^3-6t^2+1[/tex]

if we derive it we get

[tex]s^{\prime}(t)=3t^2-12t[/tex]

Now, let's set this equation to zero and solve for t

[tex]3t^2-12t=0[/tex]

using the quadratic formula

[tex]\begin{gathered} ax^2+bx+c=0 \\ x_{1,\: 2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \end{gathered}[/tex][tex]t_{1,\: 2}=\frac{-\left(-12\right)\pm\sqrt{\left(-12\right)^2-4\cdot\:3\cdot\:0}}{2\cdot\:3}[/tex][tex]t_1=\frac{-\left(-12\right)+12}{2\cdot\:3},\: t_2=\frac{-\left(-12\right)-12}{2\cdot\:3}[/tex]

the solutions to the quadratic equation are:

[tex]t=4,\: t=0[/tex]

Thus, the particle is at rest at t=0 and t=4

RELAXING NOICE
Relax