We know that the value of the house doubles each decade.
Then, the value can be written as:
[tex]V(d)=2\cdot V(d-1)[/tex]where d is the actual decade, and (d-1) is the previous decade.
If d=0 is the decade of 2015, we have:
[tex]\begin{gathered} V(0)=400,000 \\ V(1)=2\cdot V(0)=2\cdot400,000 \\ V(2)=2\cdot V(1)=2\cdot(2\cdot V(0))=2^2\cdot V(0)=2^2\cdot400,000 \\ \Rightarrow V(d)=2^d\cdot400,000 \end{gathered}[/tex]We have the explicit formula of the value as:
[tex]V(d)=400,000\cdot2^d[/tex]Now we can use this formula to calculate the value of the house for any decade.
When d=-1, the value is:
[tex]V(-1)=400,000\cdot2^{-1}=\frac{400,000}{2}=200,000[/tex]When d=-2, the value is:
[tex]V(-2)=400,000\cdot2^{-2}=\frac{400,000}{2^2}=\frac{400,000}{4}=100,000[/tex]Answer:
1. V(d) = 400,000 * 2^d
2. V(-1) = 200,000
3. V(-3) = 100,000