The formula for finding the future value of an investment is given below
[tex]\begin{gathered} FV=PV(1+r)^n \\ \text{Where} \\ FV=\text{Future value} \\ PV=\text{Present value} \\ r=annualyinterest\text{rate} \\ n=nmber\text{ of periods interest} \end{gathered}[/tex]From the question given, the following were given
[tex]\begin{gathered} PV=\text{ \$2000} \\ r=5\text{ \%} \\ r=\frac{5}{100}=0.05 \\ r_{\text{monthly}}=\frac{0.05}{12}=0.0041667 \\ n=10 \\ n_{\text{monthly}}=10\times12=120months \end{gathered}[/tex]Substitute all the given into the formula as shown below
[tex]\begin{gathered} FV=2000(1+0.00416667)^{120} \\ FV=2000(1.00416667)^{120} \end{gathered}[/tex][tex]FV=3294.032[/tex]Hence, the future value to the nearest cent is $3294.0