Respuesta :

The sum of all angles must be equal to 360, therefore:

[tex]\begin{gathered} m\angle SRT+m\angle WRS+m\angle WRV+m\angle VRU+m\angle URT=360 \\ where\colon \\ m\angle SRT\cong m\angle VRU \\ \end{gathered}[/tex]

so:

[tex](10x-5)+(10x-5)+(9x+8)+(5x+5)+(9x+13)=360[/tex]

Add like terms:

[tex]43x+16=360[/tex]

solve for x:

[tex]\begin{gathered} 43x=360-16 \\ 43x=344 \\ x=\frac{344}{43} \\ x=8 \end{gathered}[/tex]

Therefore:

[tex]\begin{gathered} m\angle WRV=5x+5 \\ m\angle WRV=5(8)+5 \\ m\angle WRV=45 \end{gathered}[/tex]

RELAXING NOICE
Relax