Determine all solutions to the equation radical 2 times cosine 2 times x equals sine squared x plus cosine squared x on the interval [0, 2π).

Given
The equation,
[tex]\sqrt{2}\cos2x=\sin^2x+\cos^2x[/tex]To determine all the solutions in the interval [0, 2π).
Explanation:
It is given that,
[tex]\sqrt{2}\cos2x=\sin^2x+\cos^2x[/tex]Since
[tex]\sin^2x+\cos^2x=1[/tex]Then,
[tex]\begin{gathered} \sqrt{2}\cos2x=\sin^2x+\cos^2x \\ \Rightarrow\cos2x=\frac{1}{\sqrt{2}} \\ \Rightarrow2x=\cos^{-1}(\frac{1}{\sqrt{2}}) \\ \Rightarrow2x=\frac{\pi}{4} \\ \Rightarrow x=\frac{\pi}{8} \end{gathered}[/tex]Hence, the solutions of the given equation in [0, 2π) is,
[tex]a)\text{ }x=\frac{\pi}{8},\frac{7\pi}{8},\frac{9\pi}{8},\frac{15\pi}{8}[/tex]