Find the solution to the system of equations. You can use the interactive graph below to find the solution.-2x+2y=-43x+3y=-18x=___y=___

Answer:
• x=-2
,• y=-4
Explanation:
Given the system of equations:
[tex]\begin{gathered} -2x+2y=-4 \\ 3x+3y=-18 \end{gathered}[/tex]Solve for x and y using the graphical method.
The first step is to plot each of the lines using the x and y-intercepts.
First Equation (-2x+2y=-4)
When x=0
[tex]\begin{gathered} 2y=-4 \\ y=-2 \\ \implies(0,-2) \end{gathered}[/tex]When y=0
[tex]\begin{gathered} -2x=-4 \\ x=-\frac{4}{-2} \\ x=2 \\ \implies(2,0) \end{gathered}[/tex]Join the points (0,-2) and (2,0) as shown below:
Second Equation (3x+3y=-18)
When x=0
[tex]\begin{gathered} 3y=-18 \\ y=-6 \\ \implies(0,-6) \end{gathered}[/tex]When y=0
[tex]\begin{gathered} 3x=-18 \\ x=-\frac{18}{3} \\ x=-6 \\ \implies(-6,0) \end{gathered}[/tex]Join the points (0,-6) and (-6,0) on the same graph as shown below:
The solution to the system is the point where the two lines intersect.
The point is (-2,-4).
Therefore:
• x=-2
,• y=-4
,•