Respuesta :

Answer:

• x=-2

,

• y=-4

Explanation:

Given the system of equations:

[tex]\begin{gathered} -2x+2y=-4 \\ 3x+3y=-18 \end{gathered}[/tex]

Solve for x and y using the graphical method.

The first step is to plot each of the lines using the x and y-intercepts.

First Equation (-2x+2y=-4)

When x=0

[tex]\begin{gathered} 2y=-4 \\ y=-2 \\ \implies(0,-2) \end{gathered}[/tex]

When y=0

[tex]\begin{gathered} -2x=-4 \\ x=-\frac{4}{-2} \\ x=2 \\ \implies(2,0) \end{gathered}[/tex]

Join the points (0,-2) and (2,0) as shown below:

Second Equation (3x+3y=-18)

When x=0

[tex]\begin{gathered} 3y=-18 \\ y=-6 \\ \implies(0,-6) \end{gathered}[/tex]

When y=0

[tex]\begin{gathered} 3x=-18 \\ x=-\frac{18}{3} \\ x=-6 \\ \implies(-6,0) \end{gathered}[/tex]

Join the points (0,-6) and (-6,0) on the same graph as shown below:

The solution to the system is the point where the two lines intersect.

The point is (-2,-4).

Therefore:

• x=-2

,

• y=-4

,

Ver imagen WynD780197
Ver imagen WynD780197
RELAXING NOICE
Relax