Respuesta :
Answer:
Step-by-step explanation:
It is given that the base lengths of the trapezoid are [tex]36 cm[/tex] and [tex]12\frac{1}{3} cm[/tex] and the height of the trapezoid is [tex]\sqrt{5} cm[/tex].
Now, the area of the trapezoid is given as:
[tex]A=\frac{1}{2}(b_{1}+b_{2})h[/tex]
Substituting the given values, we get
[tex]A=\frac{1}{2}(3.6+12\frac{1}{3})\sqrt{5}[/tex]
[tex]A=\frac{1}{2}(3.6+\frac{37}{3})\sqrt{5}[/tex]
[tex]A=\frac{1}{2}(3.6+12.33)\sqrt{5}[/tex]
[tex]A=\frac{1}{2}(15.93)\sqrt{5}[/tex]
[tex]A=7.96\sqrt{5} cm^2[/tex]
which is the required area of teh trapezoid.
The area of the trapezoid is irrational because it consists of an irrational term that is [tex]\sqrt{5}[/tex].