We will have the following:
We are given:
[tex]\begin{gathered} P=110kPa\Rightarrow P=110000Pa \\ v=1.7m/s \end{gathered}[/tex]Then, We will have that the area of the pipe is given by:
[tex]A_1=\frac{\pi d^2}{4}[/tex]And the final area of the pipe is given by:
[tex]A_2=\frac{\pi(d/2)^2}{4}\Rightarrow A_2=\frac{\pi d^2}{16}[/tex]Now, we will have that generally:
[tex]A_1v_1=A_2v_2[/tex]So:
[tex]\frac{\pi d^2}{4}\cdot1.7m/s=\frac{\pi d^2}{16}\cdot v_2\Rightarrow v_2=\frac{1}{4}(16)(1.7m/s)[/tex][tex]\Rightarrow v_2=6.8m/s[/tex]A. The speed of the water when the pipe narrows is then 6.8 m/s.
For the pressure we determine it using Bernuolli's equation of constant height to calculate it, that is:
[tex]p_1+\frac{1}{2}\cdot\rho\cdot v^2_1=p_2+\frac{1}{2}\cdot\rho\cdot v^2_2[/tex]Here rho is the density of water, that we know is 1000kg/m^3; then:
[tex]p_2=p_1+\frac{1}{2}\cdot\rho\cdot(v^2_1-v^2_2)\Rightarrow p_1=(110000)+\frac{1}{2}(1000)\cdot(1.7^2-6.8^2)[/tex][tex]\Rightarrow p_1=88325Pa\Rightarrow p_1=88.325\text{kPa}[/tex]B. The pressure of the water when the pipe narrowsis then 88.325 kPa.