How do I evaluate the following from B through D?

Part B.
In this case, we need to evaluate the following function,
[tex](g-f)(-3)=g(-3)-f(-3)[/tex]Then, by replacing the number -3 into the place of x in functions f and g, we have
[tex]g(-3)=8-(-3)^3=8-(-27)=8+27=35[/tex]and
[tex]f(-3)=(-3)^2-5(-3)=9+15=24[/tex]Then,
[tex](g-f)(-3)=g(-3)-f(-3)=35-24=11[/tex]Therefore, the answer is:
[tex](g-f)(-3)=11[/tex]Part C.
In this case, we need to evaluate
[tex](f\cdot g)(1)=f(1)\cdot g(1)[/tex]So, by replacing the number 1 into the place of x in function f and g , we have
[tex]f(1)=(1)^2-5(1)=1-5=-4[/tex]and
[tex]g(1)=8-(1)^3=8-1=7[/tex]Then, we have that
[tex](f\cdot g)(1)=f(1)\cdot g(1)=(-4)\cdot7=-28[/tex]Therefore, the answer is:
[tex](f\cdot g)(1)=-28[/tex]Part D.
Similarly, in this case we have
[tex](\frac{g}{f})(-4)=\frac{g(-4)}{f(-4)}[/tex]By replacing the number -4 into the place of x in functions f and g ,we get
[tex]g(-4)=8-(-4)^3=8-(-64)=8+64=72[/tex]and
[tex]f(-4)=(-4)^2-5(-4)=16+20=36[/tex]So, we have that
[tex](\frac{g}{f})(-4)=\frac{g(-4)}{f(-4)}=\frac{72}{36}[/tex]Therefore, the answer is:
[tex](\frac{g}{f})(-4)=2[/tex]