Respuesta :

[tex]x\text{ = -2 + }\sqrt{14}\text{ or -2 - }\sqrt{14}[/tex]

Explanation:[tex]-(x\text{ + 2})^2\text{ = -14}[/tex]

Divide both sides by -1:

[tex]\begin{gathered} \frac{-(x\text{ + 2})^2}{-1}\text{ = }\frac{-14}{-1} \\ division\text{ of same signs give positive sign} \\ (x\text{ + 2})^2\text{ = 14} \end{gathered}[/tex][tex]\begin{gathered} square\text{ root both sides:} \\ \sqrt{(x\text{ + 2})^2}\text{ = }\sqrt{14} \\ x\text{ + 2 = }\pm\text{ }\sqrt{14} \end{gathered}[/tex][tex]\begin{gathered} subtract\text{ 2 from both sides:} \\ x\text{ + 2 - 2 = -2 }\pm\text{ }\sqrt{14} \\ x\text{ = -2 }\pm\text{ }\sqrt{14} \end{gathered}[/tex][tex]\begin{gathered} x\text{ = -2 }\pm\text{ }\sqrt{14}\text{ is represented as x = -2+}\sqrt{14}\text{ or -2 - }\sqrt{14} \\ x\text{ = -2 + }\sqrt{14}\text{ or -2 - }\sqrt{14} \end{gathered}[/tex]

RELAXING NOICE
Relax