Composition of two functions: AdvancedFor the real-valued functions g(x) =*** and h(x) = 2x-5, find the composition g h and specify its domain using interval notation.

As per given by the question,
There are given that two function,
[tex]\begin{gathered} g(x)=\frac{x-2}{x+1} \\ h(x)=2x-5 \end{gathered}[/tex]Now,
For find the value of (g.h)x,
Put the value of h(x) into the g(x).
So,
From the given function;
[tex](g\cdot h)x=\frac{x-2}{x+1}\cdot2x-5[/tex]Then,
Put the value of h(x) into g(x) instead of x.
So,
[tex](g\cdot h)x=\frac{2x-5-2}{2x-5+1}[/tex]Now, solve the above function.
[tex]\begin{gathered} (g\cdot h)x=\frac{2x-5-2}{2x-5+1} \\ (g\cdot h)x=\frac{2x-7}{2x-4} \end{gathered}[/tex]Now,
Domain of the above function,
From the fuction;
[tex](g\cdot h)x=\frac{2x-7}{2x-4}[/tex]For the domain of the given function ,
Set the denominator in equal to 0.
Then,
[tex]\begin{gathered} 2x-4=0 \\ 2x=4 \\ x=2 \end{gathered}[/tex]The domain is all values of x that make the expression defined in interval notation is;
[tex](-\infty\text{ 2)}\cup(2,\text{ }\infty)[/tex]Hence, the value of (g.h)x and their domain is given below;
[tex]\begin{gathered} (g\cdot h)x=\frac{2x-7}{2x-4} \\ \text{Domain}=(-\infty\text{ 2)}\cup(2,\text{ }\infty) \end{gathered}[/tex]