“Rewrite the following expression so there are no negative exponents. Do not simplify”

The rule of the negative exponent is given below:
[tex]X^{-a}=\frac{1}{X^a}[/tex]Hence, the expression:
[tex]\frac{yx^3.-2x^{-2}y^{-2}}{-3x^{-1}y^{-4}.-3y^3}[/tex]can then be re-written, without the negative exponent, as:
[tex]\frac{yx^3\text{ . }\frac{-2}{x}\frac{1}{y^2}}{\frac{-3}{x}\frac{1}{y^4}.-3y^3}[/tex]2) The expression:
[tex]\begin{gathered} \frac{x^3y^{-1}}{3x^4y^{-2}.2x^2y^2} \\ \end{gathered}[/tex]can be re-written, without the negative exponent, as:
[tex]\frac{x^3\times\frac{1}{y}^{}}{3x^4\times\frac{1}{y^2}.2x^2y^2}[/tex]